MFJ

MFJ Graphical Antenna Impedance Analyzer

Model MFJ-226

INSTRUCTION MANUAL

CAUTION: Read All Instructions Before Operating Equipment!

MFJ ENTERPRISES, INC.

300 Industrial Park Road
Starkville, MS 39759 USA
Tel: 662-323-5869 Fax: 662-323-6551

VERSION 1 COPYRIGHT © 2015 MFJ ENTERPRISES, INC.
Important Note: Before turning on your analyzer for the first time, we strongly recommend reading through the entire manual. You will find valuable operating information along with important tips to help you take full advantage of its full range of features.

The **MFJ-226** is accurately calibrated at the factory and should not need recalibration for initial use.

Do not run CALIBRATE without proper calibration loads.

The display window has a plastic film applied at the factory to protect the display window from scratches in the manufacturing process. This film can be removed if desired.

Note: To increase battery life it is recommended that you set the BACKLIGHT to AUTO and AUTO POWER OFF to ENABLE in the SETTINGS Menu (see page 6).
INTRODUCTION

The MFJ-226 is part of the Times Technology Series of analyzers and is a compact single-port Vector Network Analyzer (VNA) that characterizes complex RF loads in 50-Ohm systems with a high degree of accuracy. Packaged for portable use, it’s easy to operate under a wide range of test conditions yet delivers many advanced features usually reserved for units costing much more. For example:

- MFJ-226 can compensate for phase rotation and losses in feedlines and test cables by using industry-standard Open/Short/Load (OSL) calibration setups.
- MFJ-226 calculates true reactance sign (plus or minus), eliminating sign ambiguity.
- The DDS stimulus generator provides continuous coverage from 1 MHz to 230 MHz.
- The DDS accepts both step-tuning and direct-frequency entry via keypad.
- The DDS features 1-Hz frequency resolution with rock-solid stability.
- There are 32 memory files for capturing and downloading test data to a PC.
- MFJ-226 has extremely simple power requirements (two AA batteries, Alkaline or NiMH).
- All test results are displayed on a bright easy-to-read backlit LCD display.
- The deluxe backlit keypad has large positive-action keys for easy field operation.
- The thick-wall molded case is hand-contoured and rugged.
Whether you are putting up a simple dipole, building a complex matching network, or characterizing an unknown device, the MFJ-226 delivers the type of data you need to get the job done. A user-friendly menu system provides rapid access to all operating modes and features:

- **Single-Frequency Mode**: Presents SWR, Complex Impedance (series and parallel), and S11 scattering parameters (rectangular and polar). SWR is displayed in huge inch-high numbers clearly visible from several feet away.

- **Sweep-Frequency Mode**: Graphically plots SWR, Impedance Magnitude (Z), Resistance (R), Reactance (X), Return Loss (RL, S11), Phase Angle, and Smith Chart displays. A continuously tunable frequency marker pulls up precise alpha-numeric data.

- **Calibrate Mode**: Walks you through the OSL cal setups for both specific swept frequency measurements and for the unit's global calibration procedure.

- **Settings Mode**: Offers useful options, shows battery condition and firmware revision.

- **PC-Mode**: Links the analyzer's memory files to your PC through the serial data port.

THEORY OF OPERATION

The MFJ-226 is a full-featured one-port Vector Network Analyzer (VNA). The term "vector" means it analyzes both the *amplitude* and *phase angle* of reflections returning from loads being tested in order to present complex impedance data.
As shown in the diagram above, the analyzer's **DDS RF-Stimulus Generator** (or VFO) generates a test signal that routes through the directional coupler to the load under test. If a mismatch (impedance discontinuity) exists, a portion of that generated signal is reflected back to the load.

The **Directional Coupler** measures amplitude and phase of both the forward and reflected signals and feeds that information to the microprocessor.

The **Microprocessor** compares data from the coupler and mathematically converts it to useful engineering parameters such as SWR, complex impedance, and S11 coordinates.

Using the **Keypad and Menu System**, the operator can call up the specific type of data needed for display on the **LCD Screen**.

The MFJ-226 is compact and simple to use, but offers several advanced features that set it apart from many lower-cost analyzers. These features include OSL (Open/Short/Load) calibration, true reactance signs, continuous frequency coverage, exceptionally high DDS resolution, extensive on-board memory, a serial data port, and simple power requirements.

MFJ-226 Technical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>Continuous, 1 MHz to 230 MHz</td>
</tr>
<tr>
<td>Frequency Resolution</td>
<td>1 Hz</td>
</tr>
<tr>
<td>Test Port Termination</td>
<td>Type-N Female</td>
</tr>
<tr>
<td>Output Power</td>
<td>+10 dBm typical</td>
</tr>
<tr>
<td>Harmonics</td>
<td>-15 dBc typical</td>
</tr>
<tr>
<td>LCD Display</td>
<td>128 x 64 resolution with backlight</td>
</tr>
<tr>
<td>Dimensions</td>
<td>6.5" (165 mm) x 3.12" (80 mm) x 1.25" (32 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>10 oz with batteries and UHF adapter</td>
</tr>
<tr>
<td>Power</td>
<td>Two (2) AA cells, Alkaline or NiMH</td>
</tr>
<tr>
<td>Computer Interface</td>
<td>USB serial</td>
</tr>
<tr>
<td>OSL Calibration</td>
<td>Male-N or UHF, Open, Short, and 50-Ohm Load</td>
</tr>
</tbody>
</table>
LAYOUT AND CONTROLS

1. Analyzer Test Port: N-Female, accepts N-male for DUTs and calibration loads.

2. USB Data Port: Accepts micro-USB connector, interface with a PC for download. (Not for powering the unit or charging batteries).

3. LCD Screen: Displays menu selections, plots, and test data.

4. Boot Key: Boot key, press and hold to turn analyzer on or off.

5. Arrows (up/down): Step or scroll for menu selections and frequency tuning.

6. Enter Key: Enters menu selections and frequency setups.

7. Return (Exit): Escapes from current function, returns to previous function.

8. Mode: Sets decimal point for numerical entries, serves multiple menu functions.

9. Battery Door: Located on back, accesses tray holding two AA cells.

10. Numerical Keypad: 0-9 keys for entering frequencies or numerical data.
POWERING THE MFJ-226

The MFJ-226 requires two (2) good quality AA batteries. The battery tray door is located on the back of the analyzer case near its base. Press and slide the lid down to expose the tray.

You may use alkaline non-rechargeable or NiMH rechargeable cells. Note that NiMH cells require an external charger (the analyzer does not have one built-in). For longest life, use fresh premium-quality cells from the same manufacturer. Carefully observe polarity during installation and never remove batteries while the unit is powered up. Abruptly cutting power can disrupt the unit's normal power-down cycle and result in memory loss.

The MFJ-226 features a built-in battery indicator that must be set up for the type of battery you intend to use. See the Settings Menu for details.

Note the USB port does not power the MFJ-226 or charge batteries.

MENU STRUCTURE

The MFJ-226 features short circular menus that allow you to identify and access all functions quickly and easily. The Main Menu and its five Sub-Menus are shown below:

```
Main Menu

Single Freq — Sweep Freq (Plot) — Calibrate (OSL) — Settings — PC Mode

SWR, Z
Series Imp
Parallel Imp
S11

SWR
Impedance (Z)
Resistance (R)
Reactance (X)
Return Loss (S11)
Phase Angle
Smith Chart

All
Open
Short
Load

Backlight
Auto Power Off
Battery (Type)
Cal Data Protect
Info (System)

Host
```

USING THE SETTINGS MODE

To check and change the analyzer's default settings, power up using the Boot key. After a brief opening screen, the Main Menu will appear. Using the Down-Arrow key, step to the Settings menu and press Enter.

When the Settings menu opens, use the Up/Down keys to make selections. To modify a setting, step to the desired option and press
To go back to the Settings menu, press the Return Arrow. See menu items below:

1. **Backlight:** Controls screen and keypad illumination.
 - **Auto:** Turns backlight off after a few seconds to conserve power.
 - **On:** Turns backlight on full time.
 - **Off:** Turns backlight off full time.

2. **Auto Power Off:** Activates or deactivates automatic shut-down (power conservation).
 - **Enabled:** Shuts the analyzer down if no keys are pressed for 5-minutes.
 - **Disabled:** Analyzer remains on until turned off manually.

3. **Battery Menu:** Sets low-battery warning threshold (upper right corner of LCD screen).
 - **Alkaline:** Low-battery indicator threshold set for Alkaline cells.
 - **Disable:** Low-battery indicator threshold set for NiMH rechargeable cells.

4. **Step Size Unit:** Select between 1MHz to 1Hz steps.

5. **LCD Contrast:** Select contrast settings between 1 and 7. 3 or 4 is usually optimum.

6. **Cal Data Protect:** Locks global calibration data so that it can't be erased by accident.
 - **Lock Cal Data:** Protects 1-230 MHz default calibration data
 - **Unlock Cal Data:** Permits global recalibration (see Calibration Procedures)

Normally you will only unlock calibration data to perform a global recalibration of the instrument over its entire frequency range (See Calibration).

7. **System Information:** General information (no choices required):
 - **Model:** Manufacturer's model number
 - **F/W/Ver:** Analyzer processor's firmware version
 - **Battery:** Five-bar scale shows battery status (1 bar empty, 5 bars full).
ENTERING SINGLE-FREQUENCY MODE

To enter the analyzer’s Single-Frequency Mode, go to the Main Menu and select Single Freq using the up/down arrows. Then press Enter. The SWR screen will come up.

Screen 1, SWR, Frequency: The opening Single-Frequency screen displays SWR, and Frequency. Note that SWR readings appear in 1-inch high numerals for easy viewing. A bargraph is also displayed for a visual representation of the SWR. When SWR opens, you will need to set the DDS generator to your desired test frequency.

SETTING THE DDS OPERATING FREQUENCY

There are two ways to set DDS frequency -- Direct Entry and Scroll/Step Entry. The Default (or start) frequency is 1 MHz.

Direct DDS Entry: Use the keypad to enter the frequency numerically. The Mode key sets the decimal point (ex. 146.750). Press Enter to send your selection to the DDS.

Scroll/Step Entry: Use Up/Down Arrows to manually "tune" the DDS while watching the frequency display. Hold the key down to scroll -- or tap to step in small increments. Scroll/step is especially useful for finding minimum SWR or targeting a specific SWR reading. Note that the operating frequency may be modified while viewing the screen any of the four Single-Freq data screens.

Screen 2. SWR Z R X Display: Displays similar to the first screen but has the SWR in smaller characters and also displays the Z R and X of the load. (Added in firmware V01R02 and is not in earlier firmware.)
Screen 3, Series Impedance: Displays the load’s resistive and reactive component as two discrete elements connected in series. Also displays a true reactance sign and the inductive or capacitive value at the test frequency. This screen can also be used to determine the value of a capacitor in pF or inductor in μH at the operating frequency.

![Series Impedance Diagram]

Screen 4, Parallel Impedance: Displays the resistive and reactive components as two parallel elements. Also displays true reactance plus a finite inductive or capacitive value.

![Parallel Impedance Diagram]

Screen 5, S11 Scattering Parameters: Displays Rectangular and Polar S11 representations of the load.

![S11 Parameters]

For all screens, press the *Return Arrow* to return to the *Main Menu.*
ENTERING SWEPT FREQUENCY MODE

This mode plots seven test parameters over a frequency span of your choice. Local Calibration may be used in this mode for accuracy through transmission line.

- Standing Wave Ratio (SWR)
- Impedance Magnitude (Z)
- Resistance (R)
- Reactance (-X or +X)
- Return Loss (RL)
- Phase Angle (Deg)
- Smith Chart

To select a display choice in the Sweep-Freq Menu, use the Up/Down Arrow keys to make a choice and press Enter. Use the Return Arrow to revert back to the Menu.

General Screen Layout: The LCD layout for all modes except the Smith Chart is shown below. A tunable marker is available for all screens and presents precise numerical data to describe any point you select along the X axis of the plot.

SWEPT-FREQUENCY SETUP

Swept-Freq operations require some initial setup using prompts controlled by the Mode key. These prompts will appear in the numerical data window at the bottom of the LCD screen. Entry items include:

Start Frequency: At the prompt, use the keypad or scroll-step procedure to create a start frequency for your sweep. The Mode key sets the decimal point and Enter applies your selection.

Stop Frequency: Same as above -- enter the sweep stop frequency.
Y Scale: Sets the amplitude range of your plot using the UP and DOWN Arrows (Ex. SWR 3:1, 10:1, 30:1, etc.).

In swept mode, there are two calibrate menu functions to perform, the Calibrate and Load Cal Data. Be sure to read the chapter describing OSL calibration in detail. The Calibrate prompts will instruct you to create an OSL cal-data file for the specific frequency span you wish to scan. The OSL calibration establishes the analyzer's calibration plane. Installing the OSL loads at the analyzer connector sets the analyzer's point of reference (zero gain, zero phase shift) at the analyzer's N connector. Installing the loads at the far end of a test cable or transmission line sets the calibration plane out at the end point to ensure accurate measurement through a line. When the cal sequence is complete, the screen will prompt you to load that data into one of four available calibrate memory files.

In the Load Cal Data, the OSL file you build is loaded into the microprocessor.

Calibrate: Use the Up/Down Arrow keys to open one of four storage files available to store your setup. The screen will then instruct you to install the Open, Short, and 50-Ohm calibration loads in sequence. Before attempting a calibration, be sure to read the Calibrate chapter for additional information about "Local" and "Global" calibration procedures and the analyzer's flash memory structure.

Load Cal Data: Use the Up/Down Arrow keys and choose a file number (1-4) for your new data file and press Enter to transfer it into the processor. Press the Return Arrow to exit if the storage file you selected is invalid.

SAVING TEST DATA

In addition to four cal-data files, the MFJ-226 has 32 data files available to save plots for later upload onto a PC as CSV files.

Save File: To save a plot, use the Up/Down Arrow keys to select one of the 32 file locations and press Enter. If there is older data in the file, your new data will overwrite it. This data will be retained when the analyzer is powered down and may be recalled.

Grid: Set to yes to impose grid lines to overlay your plot screens.
SWEPT DATA SCREENS

SWR Screen: Each swept plot is identified in the upper left-hand corner, and the tunable marker frequency appears to the right. Use the *Up/Down Arrow* keys to step or scroll across the display's frequency range. The numerical test data corresponding to the marker location appears in the data window below (Ex. SWR is 1.24:1 at the marker).

![SWR Screen](image)

Impedance Magnitude Screen (Z): This plot displays changes in Impedance Magnitude (Z) across the plot's frequency span.

![Impedance Magnitude Screen](image)

Resistance Screen (R): The *Resistance* plot shows shifts in the load's resistive component as a function of frequency. Note that a corresponding reactance value and sign also appear.

![Resistance Screen](image)
Reactance Screen (+X or -X): The Reactance plot tracks both reactive value and displays sign to accurately identify if the load is capacitive or inductive. The resistive component is also shown.

Return Loss (S11): The RL Plot shows the ratio of reflected power to forward power expressed in dB across the frequency span. The higher the return loss ratio, the lower the load's SWR.

Phase Angle (Deg): When a test signal (incident wave) is transmitted to the load under test, the returning signal (reflected wave) will rarely return in phase. This screen plots the phase angle and amplitude ratio between the incident and reflected wave.
Smith Chart Screen: The Smith Chart is a very popular tool for visualizing complex impedance relationships in transmission lines and antenna systems as a function of frequency. Note that the Smith Chart frequency marker is displayed as a cross-hair that follows the load's impedance parameters in both the X and Y axis. Normalized numerical data defining the marker position is displayed to the right-hand side of the plot.

CALIBRATION

NOTE: DO NOT try to run the global CALIBRATE procedure without a set of calibration loads. DO NOT UNLOCK the CAL DATA PROTECT except during the Global CALIBRATE procedure.

The MFJ-226 is accurately calibrated at the factory and should not need recalibration for initial use.

The MFJ-226 uses Open/Short/Load (or OSL) calibration to maintain high accuracy for its Global Calibration -- and for "Local Calibration". Local calibration is used in place of Global Calibration to eliminate amplitude and phase errors in test cables or transmission line for specific Swept-Frequency tests. The OSL calibrate procedure will be familiar to many with RF-engineering backgrounds because it is the industry standard procedure for setting up professional laboratory-grade analyzers.

The OSL (Open/Short/Load) “load set” consists of three coaxial terminations (typically built into connectors). One connector is a calibrated OPEN (O) to represent an infinitely high impedance. The second is a calibrated SHORT (S) to represent zero impedance. The third is a precision (non-reactive) 50-ohm load (L) to represent 1:1 SWR. The analyzer measures all three loads at close frequency intervals to establish the electronic calibration (or reference) plane of the analyzer. The Cal Plane represents the point in a transmission system where the analyzer encounters no intervening losses or phase shift between the detector and the load being tested. Because phase shift and loss both change with frequency when traveling through transmission line, the analyzer’s calibration data set must
include measurements taken at as many frequencies as possible. The Microprocessor and DDS handle the "resolution" task automatically. Calibration will be only as good as the load set used. Poorly made loads will add errors to the calibration causing the unit to lose accuracy especially in the VHF range.

High RF Fields may interfere with antenna measurements. You can check the accuracy with known loads to verify that the MFJ-226 is still calibrated.

Global Calibration File

All of the MFJ-226 analyzer's calibration data is stored in flash memory. Five cal-memory slots are available. One contains the *Global* calibration file. The *Global* file covers the entire 1-MHz to 230-MHz frequency span. Normally, the *Global Cal* establishes the reference plane at the analyzer’s N connector. By default, the *Global Cal* applies to all *Single-Frequency* measurements. It also applies to *Swept-Frequency* measurements unless you preempt it by loading in a *Local-Cal* file from one of the four remaining memory slots. The letter “G” may appear in the upper-left corner of the LCD screen when *Global Cal* is applied. The letter L appears in the upper left corner of the LCD screen when *Local Cal* data is used.

Building a Local Calibration File

Local calibration is normally used for measuring loads through a transmission line when you do not want to introduce the cable’s loss or phase shift into your data. To perform the *Local Cal*, you will connect the OSL loads out at the far end of the cable. During the *Local Cal* procedure, the analyzer compensates out losses and phase shift in the cable and thereby shifts its reference plane out to the load.

Memory slots numbered 1-4 are reserved for building and saving *Local Cal* files. To build a file, use the entry procedure outlined below and follow the on-screen prompts.

- Press the *Mode* key until the *Calibrate* prompt appears onscreen, then press *Enter*.
- Select one of the four storage slots and press *Enter*.

Note that calibration data and DDS frequencies are linked together in a "data set". If you decide to alter the frequency range of your plot after establishing a *Local Cal* set, the processor will recognize the shift and automatically reject the *Local Cal*, reverting back to *Global Cal*.. Likewise, if you save a *Local Cal* data set into memory and reload it at a future time, the original DDS frequencies will automatically be pulled up as part of the set.
Executing Global Calibration

The analyzer’s *Global* calibration data is normally locked to ensure it cannot be accidentally erased or overwritten by a *Local Cal* entry. However, it is a good idea to check the calibration and recalibrate your analyzer if needed periodically as a normal preventive maintenance procedure. In addition, in some circumstances, you may wish to alter the *Global Cal* to compensate for a specific test cable or test fixture. In that event, *always re-calibrate before returning the analyzer to general use!* To execute a *Global Cal*:

- Go to the *Main Menu* and select the *Calibrate* option. When you do, a “Data Locked” message will come up and direct you to go to the *Settings Menu*.

 - Go to the *Settings menu* and elect to unlock the *Global* data.
 - Return to the *Main Menu* and select *Calibration* again.
 - Select the *ALL* option and perform the *OSL Calibration* (OSL).

The program will provide you with step-by-step prompts for executing the entire *Open/Short/Load* cal procedure:

- Go to the *Main Menu* and select the *Calibrate* option. When you do, a “Data Locked” message will come up and direct you to go to the *Settings Menu*.

 - Go to the *Settings menu* and elect to unlock the *Global* data.
 - Return to the *Main Menu* and select *Calibration* again.
 - Select the *ALL* option and perform the *OSL Calibration* (OSL).

The program will provide you with step-by-step prompts for executing the entire *Open/Short/Load* cal procedure:

- Note that *Global Cal* requires sampling a very large number of frequencies between 1 MHz and 230 MHz, so each stage of the procedure can take several minutes to complete. Also, by selecting the *ALL* option, you must complete the entire cal procedure as one continuous operation. Follow the prompts without interruption or
without returning to the main menu. Alternatively, you could perform each step independently bringing up each of the three individual prompts, but keep in mind that the cal must always be completed to the same calibration plane under the same conditions or it will introduce serious measurement error. When applying the loads:

- Connect the OPEN load when requested and hit Enter to start the cal run.
- When complete, remove OPEN and connect the SHORT. Tap Enter.
- When complete, remove SHORT and connect LOAD. Tap Enter.

Upon completion, the new Global Cal will lock in place automatically and the analyzer will be ready to use. The MFJ-226 can be recalibrated at any time. If you suspect your measurement results may be inaccurate for any reason, a Global recalibration will eliminate the analyzer as the source of the problem.

CALIBRATION LOAD SET

The Calibration Load Set is more than a resistor to stick in the connector, no connector and a piece of wire. You may get fair results with these but the accuracy will suffer. A known Good dummy load can be used in a pinch to check calibration if needed.

There are a number of web sites that show construction of loads but basically they are an “N” connector that has a precision 49.9 ohm or 50.1 ohm 1% resistor connected between the center pin and the case ground with as short leads as possible. Precision chip resistors would be even better but are harder to work with. Do not use the precision load for a dummy load. It will not handle any power.

Using a GOOD dummy load may work for the load BUT the termination plane is unknown and will throw the calibration off.

The OPEN is more than leaving the connector off. It is an “N” connector that the center pin and insulator are glued or clamped in place with the connector assembly, giving a termination at the same
level as the load resistor. For HF this may not be much of a difference but VHF and UHF this could be a drastic difference.

The SHORT is more than sticking something in the connector to short it out. The calibrated short is an “N” connector that is assembled with the center pin and insulation and a brass or copper washer soldered to the center pin and clamped to the connector case with the normal connector hardware. This moves the plane of the short to the same plane as the open and the load.

USING YOUR PC TO COMMAND THE ANALYZER

Computer Software Control

A PC host program is available for controlling the analyzer and displaying measured data. The program is part of the Times Technology Series and can control other analyzers in the series. The driver and PC Host program is posted on the MFJ web site. Be sure to install the program before connecting the analyzer to your PC. Follow the driver installation instructions included with the drivers to allow the MFJ-226 to connect to your computer.

To link your analyzer to the PC, step through Main Menu and select PC Mode. Then, press Enter. This will bring up a “Waiting for Host CMD” message.

Connect the MFJ-226 to the USB cable and computer. Launch the program. It will automatically find the MFJ-226 and connect. Once the COM port of the MFJ-226 is click on START. The button will become Running. Click on it again to stop the function. Click on Quit to exit the program.

Enter the START and STOP frequencies or the CENTER frequency and SPAN width. Span width will choose the nearest width. The maximum number of points measured is 127 and can be set less. You can select MHz or KHz frequency input at the top right of the screen.

Select the mode and with the slider on the left of the screen set the scale.
To save in CSV format click the **Save to File** and enter the information in the **Save As** window.

To load data from the MFJ-226 click on the **Load from T200** button and select the data file to retrieve.

Manual Control via Computer

This mode can be used for making custom data capture and control routines.

Set the MFJ-226 as above to select the PC Mode.

To permit communication, the serial port between the MFJ-226 and the PC should be configured as follows:

- **Baud Rate** = 115200
- **Parity Bit** = None
- **Data Bits** = 8
- **Stop Bit** = 1

To command the DDS to tune to a specific frequency, transmit a six-digit frequency in ASCII characters over the serial port. To initiate a measurement at that frequency, send the ASCII character ‘S’. You should then receive a null-terminated ASCII data string. This string presents the measured magnitude and phase angle in degrees separated by a comma. The same result will be displayed on both the PC and the analyzer's LCD display.

Send another ‘S’ to repeat the previous measurement at the same frequency, or issue a new six-digit frequency to tune the analyzer to a new frequency.

Sending and ASCII character 'D' brings the analyzer back to its initial state, displaying the “Waiting for Host CMD” message.

FIRMWARE UPDATE PROCEDURE

MFJ will provide access to firmware updates as they become available. Your MFJ-226 may be updated via the USB interface with the following procedure:

- Install fresh batteries before attempting the download. It is important to maintain operating power during the transfer.
- Do not turn power off or remove the batteries at any time during the firmware update.

Your PC must be running a reasonably current version of Windows to perform the update.

To initiate:
Download the Firmware update and the Firmware Update Program. Put them in a directory that will be easy to get to.

Extract the update.exe from the zip file and put it in this directory. When finished there should be the firmware.enc and update.exe in this directory along with the zip file.

On the PC, Click on the RUN command and type CMD in the command line.

In the Command Line Box, using the DOS commands change the directory to the directory where the files were saved.

Put the MFJ-226 into update mode by pressing and holding the analyzer’s Mode key and press the boot key to turn on the analyzer. A “Firmware Update” message will appear on the LCD screen.

Plug in the USB cable to link up with the PC.

Find out which USB emulated COM port is connected by checking:

Control Panel/System/Hardware/Device Manage

Confirm that the MFJ-226 LCD screen is displaying "Firmware Update"

Set up the following command:

```
update firmware.ENC -COMx -115200
```

where firmware.ENC is the actual name of the firmware file and
x is the actual COM port in use.

For example if the firmware update file is
“MFJ-226V01R02.ENC” and the MFJ-226 is connected to COM3 then enter:
“update MFJ-226V01R02.ENC –COM3 -115200”

The program will start, indicate the progress, then tell you when it is finished.

The MFJ-226 will power off and you can disconnect the cable and close the DOS box.

The firmware version can be checked in the SETTINGS INFO section.
12 MONTH LIMITED WARRANTY

MFJ Enterprises, Inc. Warrants to the original owner of this product, if manufactured by MFJ Enterprises, Inc. and purchased from an authorized dealer or directly from MFJ Enterprises, Inc. to be free from defects in material and workmanship for a period of 12 months from date of purchase provided the following terms of this warranty are satisfied.

1. The purchaser must retain the dated proof-of-purchase (bill of sale, canceled check, credit card or money order receipt, etc.) describing the product to establish the validity of the warranty claim and submit the original or machine reproduction of such proof-of-purchase to MFJ Enterprises, Inc. at the time of warranty service. MFJ Enterprises, Inc. shall have the discretion to deny warranty without dated proof-of-purchase. Any evidence of alteration, erasure, or forgery shall be cause to void any and all warranty terms immediately.

2. MFJ Enterprises, Inc. agrees to repair or replace at MFJ’s option without charge to the original owner any defective product under warranty, provided the product is returned postage prepaid to MFJ Enterprises, Inc. with a personal check, cashier’s check, or money order for $12.00 covering postage and handling.

3. MFJ Enterprises, Inc. will supply replacement parts free of charge for any MFJ product under warranty upon request. A dated proof-of-purchase and an $8.00 personal check, cashier’s check, or money order must be provided to cover postage and handling.

4. This warranty is NOT void for owners who attempt to repair defective units. Technical consultation is available by calling (662) 323-5869.

5. This warranty does not apply to kits sold by or manufactured by MFJ Enterprises, Inc.

6. Wired and tested PC board products are covered by this warranty provided only the wired and tested PC board product is returned. Wired and tested PC boards installed in the owner’s cabinet or connected to switches, jacks, or cables, etc. sent to MFJ Enterprises, Inc. will be returned at the owner’s expense unrepaired.

7. Under no circumstances is MFJ Enterprises, Inc. liable for consequential damages to person or property by the use of any MFJ products.

8. Out-of-warranty Service: MFJ Enterprises, Inc. will repair any out-of-warranty product provided the unit is shipped prepaid. All repaired units will be shipped COD to the owner. Repair charges will be added to the COD fee unless other arrangements are made.

9. This warranty is given in lieu of any other warranty expressed or implied.

10. MFJ Enterprises, Inc. reserves the right to make changes or improvements in design or manufacture without incurring any obligation to install such changes upon any of the products previously manufactured.

11. All MFJ products to be serviced in-warranty or out-of-warranty should be addressed to MFJ Enterprises, Inc., 300 Industrial Park Road, Starkville, Mississippi 39759, USA and must be accompanied by a letter describing the problem in detail along with a copy of your dated proof-of-purchase.

12. This warranty gives you specific rights, and you may also have other rights which vary from state to state.